Transplantation of glial-restricted precursor cells into the adult spinal cord: survival, glial-specific differentiation, and preferential migration in white matter.
نویسندگان
چکیده
Glial-restricted precursor (GRP) cells are among a number of candidate cells for transplantation repair of CNS injury. The isolation and characterization of these cells in vitro have been described previously, but their in vivo properties are not well understood. We examined the fate and migration of grafted fetal GRP cells harvested from alkaline phosphatase-expressing transgenic rats into intact and injured spinal cord. Transplanted GRP cells survived for at least 6 weeks and differentiated along astrocytic and oligodendrocytic but not neuronal lineages. Cells grafted into the intact spinal cord exhibited robust migration along longitudinal white matter tracts and by 6 weeks migrated more than 15 mm. In contrast, migration of GRP cells in the gray matter was very limited. We then examined the phenotypic properties of proliferating endogenous precursors in response to injury by BrdU labeling. The predominant proliferating population seen after injury consisted of GRP-like cells with Nkx2.2/olig2 phenotype. Incorporation of BrdU by endogenous cells suggests that the environment provides proliferation signals and is permissive to glial precursor survival. To test if exogenous GRP cells would respond similarly, we transplanted GRP cells into a lateral funiculus injury. GRP cells survived and differentiated along glial lineages and migrated along white matter tracts in the injured spinal cord. Directed homing toward the lesion was not seen and there was no significant bias in differentiation between cells transplanted into injured and uninjured spinal cord. GRP cell transplants may therefore provide a cellular transplant that can respond to appropriate endogenous cues to produce therapeutic molecules and new glial cells after injury.
منابع مشابه
Grafted lineage-restricted precursors differentiate exclusively into neurons in the adult spinal cord.
Multipotent neural stem cells (NSCs) have the potential to differentiate into neuronal and glial cells and are therefore candidates for cell replacement after CNS injury. Their phenotypic fate in vivo is dependent on the engraftment site, suggesting that the environment exerts differential effects on neuronal and glial lineages. In particular, when grafted into the adult spinal cord, NSCs are r...
متن کاملLineage-restricted neural precursors survive, migrate, and differentiate following transplantation into the injured adult spinal cord.
Fetal spinal cord from embryonic day 14 (E14/FSC) has been used for numerous transplantation studies of injured spinal cord. E14/FSC consists primarily of neuronal (NRP)- and glial (GRP)-restricted precursors. Therefore, we reasoned that comparing the fate of E14/FSC with defined populations of lineage-restricted precursors will test the in vivo properties of these precursors in CNS and allow u...
متن کاملHuman Glial-Restricted Progenitor Transplantation into Cervical Spinal Cord of the SOD1G93A Mouse Model of ALS
Cellular abnormalities are not limited to motor neurons in amyotrophic lateral sclerosis (ALS). There are numerous observations of astrocyte dysfunction in both humans with ALS and in SOD1(G93A) rodents, a widely studied ALS model. The present study therapeutically targeted astrocyte replacement in this model via transplantation of human Glial-Restricted Progenitors (hGRPs), lineage-restricted ...
متن کاملTransplantation of Specific Human Astrocytes Promotes Functional Recovery after Spinal Cord Injury
Repairing trauma to the central nervous system by replacement of glial support cells is an increasingly attractive therapeutic strategy. We have focused on the less-studied replacement of astrocytes, the major support cell in the central nervous system, by generating astrocytes from embryonic human glial precursor cells using two different astrocyte differentiation inducing factors. The resulti...
متن کاملA Comparative Study of Therapeutic Benefits of Intraspinal and Intravenous Bone Marrow Stromal Cell Administration to Spinal Cord Injuries
Background: Recent reports demonstrated that intravenous route as a minimally invasive method, similar to direct injection, is suitable for bone marrow stromal cell (BMSC) transplantation. In this study, we made a comparison of intraspinal and intravenous route of BMSC administration to repair injured spinal cord tissue. Methods: Six groups of adult female rats were used in this study. Laminect...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Glia
دوره 45 1 شماره
صفحات -
تاریخ انتشار 2004